An Approximation Scheme for Solution to the Optimal Investment Problem in Incomplete Markets
نویسندگان
چکیده
We provide an approximation scheme for the maximal expected utility and optimal investment policies for the portfolio choice problem in an incomplete market. Incompleteness stems from the presence of a stochastic factor which affects the dynamics of the correlated stock price. The scheme is built on the Trotter-Kato approximation and is based on an intuitively pleasing splitting of the Hamilton-Jacobi-Bellman (HJB) equation in two sub-equations. The first is the HJB equation of a portfolio choice problem with a stochastic factor but in a complete market, while the other is a linear equation corresponding to the evolution of the orthogonal (non-traded) part of the stochastic factor. We establish convergence of the scheme to the unique viscosity solution of the marginal HJB equation, and, in turn, derive a computationally tractable representation of the maximal expected utility and construct an ε-optimal portfolio in a feedback form.
منابع مشابه
Optimal flexible capacity in newsboy problem under stochastic demand and lead-time
In this paper, we consider a newsvendor who is going to invest on dedicated or flexible capacity, our goal is to find the optimal investment policy to maximize total profit while the newsvendor faces uncertainty in lead time and demand simultaneously. As highlighted in literature, demand is stochastic, while lead time is constant. However, in reality lead time uncertainty decreases newsvendor's...
متن کاملAN ADAPTIVE WAVELET SOLUTION TO GENERALIZED STOKES PROBLEM
In this paper we will present an adaptive wavelet scheme to solvethe generalized Stokes problem. Using divergence free wavelets, theproblem is transformed into an equivalent matrix vector system, thatleads to a positive definite system of reduced size for thevelocity. This system is solved iteratively, where the applicationof the infinite stiffness matrix, that is sufficiently compressible,is r...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملAn Analytical Solution for Inverse Determination of Residual Stress Field
An analytical solution is presented that reconstructs residual stress field from limited and incomplete data. The inverse problem of reconstructing residual stresses is solved using an appropriate form of the airy stress function. This function is chosen to satisfy the stress equilibrium equations together with the boundary conditions for a domain within a convex polygon. The analytical solu...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Financial Math.
دوره 4 شماره
صفحات -
تاریخ انتشار 2013